Back to Blog
Manufacturing

Additive Manufacturing in Production: Complete Industry Guide

Discover how additive manufacturing (3D printing) is transforming production. Learn applications, benefits, and implementation strategies for manufacturing.

6 min read
Share:

Additive Manufacturing in Production: Complete Industry Guide

Meta Description: Discover how additive manufacturing (3D printing) is transforming production. Learn applications, benefits, and implementation strategies for manufacturing.


Introduction

Additive manufacturing (AM), also known as 3D printing, builds parts layer by layer from digital models. Once used only for prototyping, AM is now a viable production technology for many industries.

What Is Additive Manufacturing?

Additive manufacturing creates objects by adding material layer by layer, contrasting with subtractive manufacturing that removes material.

┌─────────────────────────────────────────────────────────────────┐
│              Manufacturing Approaches                            │
├─────────────────────────────────────────────────────────────────┤
│                                                                 │
│  SUBTRACTIVE (Traditional):                                    │
│  Start → ████████████ → Remove material → Part                 │
│            with block                                           │
│                                                                 │
│  ADDITIVE (3D Printing):                                       │
│  Start → ░░░░ → Build layer by layer → Part                    │
│         nothing                                                 │
│                                                                 │
│  FORMATIVE (Molding):                                          │
│  Start → ──────── → Shape material → Part                      │
│         raw material    in mold                                │
│                                                                 │
└─────────────────────────────────────────────────────────────────┘

AM Technologies

Major Categories

TechnologyProcessMaterialsBest For
FDM/FFFExtruded filamentThermoplasticsFunctional parts, jigs, fixtures
SLA/DLPPhotopolymerizationResinsFine details, smooth surfaces
SLSPowder bed fusionNylon, TPUFunctional parts, complex geometries
MJFPowder bed fusionNylonProduction parts, speed
SLM/DMLSMetal powder fusionMetalsMetal parts, complex geometries
EBMElectron beamMetalsMetal parts, medical
MJ/PLAMaterial jettingPhotopolymersMulti-material, full color
DMLSDirect metal laser sinteringMetal alloysComplex metal parts
BJBinder jettingMetal, sand, ceramicLarge parts, molds, cores

FDM (Fused Deposition Modeling)

Most common AM technology:

┌─────────────────────────────────────────────────────────────────┐
│              FDM Process                                        │
├─────────────────────────────────────────────────────────────────┤
│                                                                 │
│  1. FEED                                                        │
│     Filament spool feeds into extruder                          │
│           │                                                      │
│           ▼                                                      │
│  2. MELT                                                        │
│     Heated nozzle melts filament (180-260°C)                    │
│           │                                                      │
│           ▼                                                      │
│  3. EXTRUDE                                                     │
│     Nozzle deposits material layer by layer                     │
│           │                                                      │
│           ▼                                                      │
│  4. BUILD                                                       │
│     Part builds layer by layer on build platform                │
│           │                                                      │
│           ▼                                                      │
│  5. FINISH                                                      │
│     Support removal, post-processing as needed                  │
│                                                                 │
└─────────────────────────────────────────────────────────────────┘

AM Applications in Manufacturing

1. Prototyping

Benefits:

  • Speed: Parts in hours vs. weeks
  • Cost: Lower tooling costs
  • Flexibility: Design iterations easy
  • Complexity: No cost for complex geometries

2. Tooling

Applications:

  • Jigs and fixtures
  • Gauges and templates
  • Assembly aids
  • Workholding
  • Custom hand tools
Example: Custom Fixture
Traditional: Machine from aluminum block
• Lead time: 2-3 weeks
• Cost: $500-1,500
• Modifications: Difficult

3D Printed: Print in nylon or polycarbonate
• Lead time: 1-2 days
• Cost: $50-200
• Modifications: Easy (modify file and reprint)

3. Production Parts

When AM makes sense:

ScenarioWhy AM
Complex geometryInternal features, lattice structures
CustomizationPersonalized products, medical devices
Low volumeNo tooling cost
Spare partsDigital inventory, on-demand production
Consolidated partsReplace assemblies with single part
LightweightingLattice structures, topology optimization

4. Digital Inventory

Replace physical inventory with digital files:

Traditional Spare Parts:
• Warehouse storage
• Inventory carrying cost
• Obsolescence risk
• Long lead times for rare parts

Digital Inventory:
• Store digital files
• Print on demand
• No obsolescence
• Faster delivery
• Lower total cost for slow-moving parts

5. Custom and Personalized Products

IndustryApplications
MedicalImplants, surgical guides, hearing aids
DentalAligners, crowns, models
AerospaceLightweight components, complex geometries
AutomotiveCustom brackets, fixtures, low-volume parts
Consumer goodsCustom phone cases, jewelry, eyewear

Design for Additive Manufacturing (DfAM)

Key Principles

┌─────────────────────────────────────────────────────────────────┐
│              DfAM Principles                                    │
├─────────────────────────────────────────────────────────────────┤
│                                                                 │
│  ORIENT FOR OPTIMAL BUILD                                       │
│  • Minimize support material                                    │
│  • Optimize strength in build direction                        │
│  • Consider surface finish requirements                         │
│                                                                 │
│  EXPLOIT COMPLEXITY                                             │
│  • Internal channels for cooling                                │
│  • Lattice structures for weight reduction                      │
│  • Organic shapes                                               │
│  • Part consolidation                                           │
│                                                                 │
│  DESIGN FOR SELF-SUPPORT                                        │
│  • 45° rule for overhangs                                       │
│  • Add chamfers and fillets                                     │
│  • Avoid large flat areas                                       │
│                                                                 │
│  OPTIMIZE WALL THICKNESS                                        │
│  • Minimum wall thickness depends on technology                 │
│  • Uniform thickness preferred                                  │
│  • Avoid thick sections that can warp                           │
│                                                                 │
│  CONSIDER POST-PROCESSING                                       │
│  • Support removal                                              │
│  • Surface finishing                                            │
│  • Accuracy requirements                                         │
│  • Assembly requirements                                         │
│                                                                 │
└─────────────────────────────────────────────────────────────────┘

AM vs. Traditional Manufacturing

Decision Framework

CHOOSE ADDITIVE WHEN:
☐ Complex internal geometry needed
☐ Low volume (<5,000 units/year)
☐ High customization required
☐ Quick turnaround needed
☐ Lightweight design important
☐ Part consolidation possible
☐ No tooling preferred

CHOOSE TRADITIONAL WHEN:
☐ High volume (>10,000 units/year)
☐ Simple geometry
☐ Tight tolerances required
☐ Specific material requirements
☐ Low unit cost critical
☐ Established process qualified

Cost Comparison

Break-even Analysis:

Traditional (Injection Molding):
Tooling: $25,000
Unit cost: $2.00

Additive (3D Printing):
Tooling: $0
Unit cost: $25.00

Break-even quantity:
$25,000 / ($25 - $2) = 1,087 units

Below 1,087 units: AM is cheaper
Above 1,087 units: Traditional is cheaper

Implementing AM

Implementation Steps

  1. Assessment

    • Identify potential applications
    • Analyze cost/benefit
    • Select target parts
  2. Technology Selection

    • Evaluate technologies
    • Consider materials
    • Assess quality requirements
  3. Pilot Implementation

    • Select pilot project
    • Train team
    • Implement and learn
  4. Scale Up

    • Expand to other applications
    • Build internal capacity
    • Integrate with existing processes
  5. Optimization

    • Refine designs for AM
    • Improve processes
    • Expand applications

AM Quality Considerations

Key Quality Factors

FactorConsiderations
Accuracy±0.1-0.3mm typical for FDM, better for other technologies
Surface finishLayer lines visible, post-processing may be needed
StrengthAnisotropic properties, layer-dependent
RepeatabilityProcess control critical
Material propertiesDifferent from bulk materials

Emerging Developments

  1. Speed Improvements

    • Faster print heads
    • Multiple print heads
    • New technologies
  2. Material Advances

    • New polymers with better properties
    • Metal materials
    • Composites
    • Bio-materials
  3. Integration with Traditional Manufacturing

    • Hybrid machines
    • Complementary processes
    • Digital thread
  4. Industry 4.0 Integration

    • Connected printers
    • Distributed manufacturing
    • Digital inventory networks

Conclusion

Additive manufacturing offers significant advantages for complex parts, low volumes, and rapid prototyping. Success requires understanding capabilities, designing for AM, and selecting appropriate applications.

Exploring AM for your operations? Contact us to discuss your applications and potential.


Related Topics: Digital Manufacturing, Rapid Prototyping, Industry 4.0

#mes